ជំពូក១ :  ប្រព័ន្ធលីនេអ៊ែរ (Linear System)

October 2nd, 2020


From Wikipedia:

MIT Course on convex analysis ក្នុងលំហ $\mathbb {R}^{3}$ ប្លង់ $P_{2}$ ( ព័ណ៌ខៀវខាងលើ ) មិនមែនជាលំហវ៉ិចទ័ររងទេ តែវាជាលំហអាហ្វីនរង។ ទិសដៅរបស់វា គឺប្លង់ $P_{1}$ ( ព័ណ៌បៃតងនៅខាងក្រោម ) ដែលជាលំហវ៉ិចទ័ររង។ ទោះបីវ៉ិចទ័រ $\vec{a}$ និង $\vec{b}$ ស្ថិតក្នុង $P_{2}$ តែផលសងរបស់វា គឺជា វ៉ិចទ័រប្រាប់ទីតាំង their difference is a displacement vector: $\vec{a} - \vec{b} \notin P_{2}$ តែ $\vec{a} - \vec{b} \in P_{1}$.

ក្នុងគណិតវិទ្យា លំហអាហ្វីន (affine space) គឺជាទម្រង់ធរណីមាត្រមួយ ដែលកំណត់បានភាពទូទៅនៃលក្ខណៈរបស់ លំហអឺគ្លីដ (Euclidean spaces) តាមវិធីមួយដែលមិនអាស្រ័យទៅនឹងគោលគំនិតទាំងឡាយណាទាក់ទងនឹងចំងាយ និងរង្វាស់មុំ តែវារក្សាបានលក្ខណៈទាំងឡាយណា ដែលទាក់ទងនឹងភាពស្របគ្នា និងសមាមាត្រនៃប្រវែងរបស់អង្កត់ស្របគ្នា។

នៅក្នុងលំហអាហ្វីន គេមិនអាចធ្វើការបែងចែកភាពខុសគ្នានៃចំណុចគល់តម្រុយទាំងឡាយបានទេ។ ដូច្នេះ មិនមានវ៉ិចទ័រណាមួយ ដែលមានចំណុចគល់នៅនឹងថ្កល់នោះទេ ហើយក៏គ្មានវ៉ិចទ័រណាមួយ អាចភ្ជាប់បានតែមួយរបៀបគត់ទៅនឹងចំណុចមួយនោះដែរ។ ជំនួសមកវិញ ក្នុងលំហអាហ្វីន មានការបម្លាស់ទីតាំងនៃវ៉ិចទ័រ ដែលគេហៅថា វ៉ិចទ័របម្លែងកិល ឬត្រឹមតែ បម្លែងកិល រវាងពីរចំណុចក្នុងលំហ។ In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead displacement vectors, also called translation vectors or simply translations, between two points of the space.[1] Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. We see that

  សេចក្ដីផ្ដើមអំពីប្រព័ន្ធសមីការលីនេអ៊ែរ

Linear algebra is an essential tool for all branches of mathematics, in particular when it is about the modeling and then numerically solving problems from various fields: physical or mechanical sciences, life sciences, chemistry, economics, engineering sciences ...
Linear systems intervene through their applications in many contexts, because they form the computational basis of linear algebra. They also allow to treat a good part of the theory of linear algebra in finite dimension. This is why this course begins with a study of linear equations and their solution.
The aim of this chapter is essentially practical: it is a question of solving linear systems. The theoretical part will be reviewed and proven in the ‍‌Matrices chapter.

  និយមន័យ និងលក្ខណៈបឋមៗ

យក $\vect{\E}$ ជាលំហវ៉ិចទ័រកំណត់លើកាយ $\mathbb{R}$ និងកំណត់ $\mathcal{E}$ ជាសំណុំទូទៅមួយ មិនទទេ។ គេថា $\mathcal{E}$ ជា លំហអាហ្វីន ភ្ជាប់ទៅនឹង​លំហ​វ៉ិចទ័រ $\vect{\E}$ (ឬ តាមទិសដៅ $\vect{\E}$) បើមានអនុវត្តន៍មួយ \[ \begin{array}{rcl} \varphi:\; \mathcal{E}\times \mathcal{E} &\longrightarrow & \vect\E\\ (A,B) &\longmapsto & \overrightarrow{AB} \end{array} \] ផ្ទៀងផ្ទាត់ស្វ័យសត្យ ដូចខាងក្រោម៖

  1. យកចំណុចទូទៅ $A\in \mathcal{E}$ នោះ អនុវត្តន៍មួយ $\varphi_A:\; \mathcal{E} \longrightarrow \vect\E$ ដែល $\forall M\in \mathcal E: M \longmapsto \vect{AM}$ ជាអនុវត្តន៍មួយទល់មួយ។
  2. ទំនាក់ទំនងហ្សាល (Relation de Chasles) $$\forall M, N, P\in \mathcal{E},\ \varphi(M,P) = \varphi(M,N) + \varphi(N,P)$$

លំហអាហ្វីន $\mathcal{E}$ ជាលំហមានវិមាត្ររាប់អស់ បើលំហវ៉ិចទ័រ $\vect{\E}$ ជាលំហមានវិមាត្ររាប់អស់។ ក្នុងករណីនេះ វិមាត្ររបស់ $\mathcal{E}$ ស្មើនឹងវិមាត្ររបស់លំហទិសដៅ។

លំហអាហ្វីន $\mathcal{E}$ ជាលំហមានវិមាត្ររាប់អស់ បើលំហវ៉ិចទ័រ $\vect{\E}$ ជាលំហមានវិមាត្ររាប់អស់។ ក្នុងករណីនេះ វិមាត្ររបស់ $\mathcal{E}$ ស្មើនឹងវិមាត្ររបស់លំហទិសដៅ។

ចំណាំ : បើ $\mathcal{E}$ ជាលំហអាហ្វីន តាមទិសដៅ $\vect{\E}$ នោះធាតុរបស់ $\mathcal{E}$ ហៅថា ចំណុច ហើយគេកំណត់សរសេរដោយអក្សរធំ $A,B, C,D,M,N,P$, $\cdots$។ ចំណែកឯធាតុរបស់លំហ $\vect{\E}$ ហៅថា វ៉ិចទ័រ ហើយកំណត់សរសេរដោយអក្សរតូច មានសញ្ញាព្រួញនៅខាងលើ គឺ $\vec{i}, \vec{j}, \vec{k}, \vec{u}, \vec{v}, \cdots $។

ពិនិត្យមើលឧទាហរណ៍ខាងក្រោម៖
  1. បើ $\dim\big(\vect\E\big)=1$ នោះគេនិយាយថា $\mathcal{E}$ គឺជា បន្ទាត់អាហ្វីន
  2. បើ $\dim\big(\vect\E\big)=2$ នោះគេថា $\mathcal{E}$ គឺជា ប្លង់អាហ្វីន
  3. គ្រប់លំហវ៉ិចទ័រ $\vect{\E}$ កំណត់លើកាយ $\mathbb{R}$ តាមន័យកាណូនិច អាចចាត់ទុកថាជាលំហអាហ្វីនមួយ ដែលភ្ជាប់ទៅនឹងខ្លួនវា នៅពេលណាគេមានអនុវត្តន៍ដូចតទៅ៖ $$ \begin{array}{ccl} \vect\E\times \vect\E &\longrightarrow & \vect\E\\ (a,b) &\longmapsto & \vect{ab} = b-a \end{array} $$ ដែលផ្ទៀងផ្ទាត់ទៅនឹងលក្ខខណ្ឌនៃនិយមន័យ។

ចំណាំ: ដោយសារបែបនេះហើយ ទើបធាតុរបស់លំហវ៉ិចទ័រកំណត់លើកាយ $\mathbb{R}$ នៅក្នុងបរិបទខ្លះ ត្រូវបានចាត់ទុកថាជា ចំណុច ឬក៏ជា វ៉ិចទ័រ។

  វិធានគណនា

យក $\mathcal{E}$ ជាលំហអាហ្វីនភ្ជាប់ទៅនឹងលំហវ៉ិចទ័រ $\vect{\E}$ ។ ដូច្នេះគេបាន

  1. $\forall M, N \in \mathcal{E},\ \vect{AM}= \vect{AN}\Longrightarrow M = N$
  2. $\forall A, B \in \mathcal{E},\ \vect{AB} =\vect{0} \Longleftrightarrow A=B$
  3. $\forall A, B \in \mathcal{E},\ \vect{BA} = -\vect{AB}$
  4. $\forall A, B, C \in \mathcal{E},\ \vect{BC} = \vect{AC} - \vect{AB}$
  5. ចំពោះគ្រប់ចំណុច $A\in \mathcal{E}$ និងគ្រប់វ៉ិចទ័រ $\vect{u} \in \vect\E$ នោះមានចំណុចតែមួយគត់ $M\in \mathcal{E}$ ដែល $\vect{AM} = \vect{u}$
  6. បើ $A$ និង $B$ គឺជាចំណុចពីររបស់ $\mathcal{E}$ នោះមានវ៉ិចទ័រតែមួយគត់ $\vect{u}\in \vect\E$ ដែល $\vect{AB} = \vect{u}$

[Show proof]

សម្រាយបញ្ជាក់.
  1. តាមលក្ខណៈទី១ នៃនិយមន័យ​គេបានអនុវត្តន៍ \[\begin{array}{rrll} \phi: & \mathcal{E} &\longrightarrow &\vect\E\\ & M &\longmapsto &\phi(M) = \vect{AM} \end{array}\] គឺជាអនុវត្តន៍មួយទល់មួយ។ ដោយ $\varphi$ ជាអនុវត្តន៍ប្រកាន់ ដូច្នេះ គេទាញបានចម្លើយ។
  2. $(\Leftarrow)$ តាមទំនាក់ទំនងហ្សាល ចំពោះគ្រប់​ $A\in \mathcal{E}$ គេបាន $$\vect{AA}+\vect{AA}=\vect{AA}\quad \text{ so } \quad \vect{AA}=\vect{0}$$ $(\Rightarrow)$ ដោយ $\vect{AB} = \vect{0} \Longrightarrow \vect{AB} = \vect{AA}$។ ដូច្នេះ $B=A$។
  3. ចំពោះគ្រប់ $A\in \mathcal{E}$ គេបាន $\vect{AA}= \vect 0$។ តាមទំនាក់ទំនងហ្សាល នោះ $\forall B\in \mathcal{E}$ គេបាន $\vect{AB} + \vect{BA} = \vect 0$។ ដូច្នេះ $\vect{BA} = -\vect{AB}$។
  4. $\forall A, B, C \in \mathcal{E}$ តាមទំនាក់ទំនងហ្សាល គេបាន $$ \vect{BC} = \vect{BA} + \vect{AC} = -\vect{AB} + \vect{AC} $$
  5. នៅពេលណាយើងកំណត់ចំណុច​ $A$ ឱ្យនៅថេរ នោះអនុវត្តន៍ \[ \begin{array}{rl} \phi: &\mathcal{E} \longrightarrow \vect\E\\ & M\longmapsto \vect{AM} \end{array} \] គឺជាអនុវត្តន៍មួយទល់មួយ។ ដូច្នេះ ចំពោះគ្រប់ $\vect u \in \vect\E$ នោះមានចំណុចតែមួយគត់ $M\in \mathcal{E}$ ដែល $\vect{AM} = \vect u$។

  លក្ខណៈរបស់ប្រលេឡូក្រាម

សំណើ. ឧបមា $A, B, C$ និង $D$ គឺជាចំណុចបួននៅក្នុងលំហអាហ្វីន $\mathcal E$។ ដូច្នេះ លក្ខណៈខាងក្រោមសមមូលគ្នា៖

  1. $\vect{AB} = \vect{CD}$
  2. $\vect{AC} = \vect{BD}$
  3. $\vect{AB} + \vect{AC} = \vect{AD}$
បើចំណុចទាំងបួន $A, B, C$ និង $D$ ផ្ទៀងផ្ទាត់លក្ខខណ្ឌណាមួយ ក្នុងចំណោមលក្ខខណ្ឌទាំងបីខាងលើ នោះគេនិយាយថា ចំណុច $A, B, C$ និង $D$ បង្កើតបានជាប្រលេឡូក្រាមមួយ។

[Show proof]

[Show proof]

Example 3 Evaluate the following integral. $$\int{{\left( {3t + 5} \right)\cos \left( {\frac{t}{4}} \right)\,dt}}$$
Show solution
Example 5 Evaluate the following integral $$\int{{x\sqrt {x + 1} \,dx}}$$
  1. Using Integration by Parts.
  2. Using a standard Calculus I substitution.
Show All Solutions Hide All Solutions
a Using Integration by Parts. Show Solution
b Using a standard Calculus I substitution. Show Solution

fa fa-caret-down


Used on a button:

Motivation

This is the last part in our series exploring how to get new topological spaces from old ones. For now, at least. We mentioned the definition of the product topology for a finite product way back in Example 2.3 .6 in the lecture notes concerning bases of topologies, but we did not do anything with it at the time. In that same section we also discussed the following basis on $\mathbb{R}^{2}$ that we were eventually able to show generates the usual topology on $\mathbb{R}^{2}$ : \[ \mathcal{B} = \left\{(a, b) \times(c, d) \subseteq \mathbb{R}^{2}:\; a < b, c < d\right\} \] This is, essentially, how (finite) product topologies work in general, as we will see shortly. We will also explore a new way of analyzing topological properties themselves. We have already seen that all the topological properties we care about are preserved by homeomorphisms, and that some are preserved under weaker maps like continuous surjections (recall that the image of a dense set under a continuous function is dense in the range of the function). We also saw that some topological properties are hereditary (like Hausdorffness and second countability) while some are not (like separability). In this section we will explore another way of analyzing properties, by asking whether they are preserved by finite products. Also, while reading this section, note that we are specifically talking about finite products of topological spaces, and any time we refer to a product of spaces the reader should assume we mean a finite product. Infinite products are substantially more complicated, and we will deal with them later in the course. Finite products are actually quite straightforward.

2. Finite product topologies

Definition 2.1. Let $(X, \mathcal{T}_1)$ and $(Y, \mathcal{T}_2)$ be topological spaces. The product topology on $X \times Y$ is the topology generated by the basis \[ \mathcal{B}_{X\times Y} = \big\{U \times V: U \in \mathcal{T}_1, V \in \mathcal{T}_2\big\} \] More generally if $\left(X_{1}, \mathcal{T}_{1}\right), \ldots,\left(X_{n}, \mathcal{T}_{n}\right)$ are topological spaces, the product topology on \[ \prod_{i=1}^{n} X_{i} = X_{1} \times \cdots \times X_{n} \] is the topology generated by the basis \[ \mathcal{B}_{\prod_{i=1}^{n} X_{i}} = \big\{U_{1} \times U_{2} \times \cdots \times U_{n} \mid \; U_{i} \in \mathcal{T}_{i}, \; \text{ for all } i=1, \ldots, n\big\} \]

Simple as that. This definition is what you should want it to be, more or less. It is natural to expect that products of sets that are open in each coordinate should be open in the product. That alone does not give you a topology, it turns out, but it does give you a basis. So you generate a topology from it, and the result is the product topology. As you would expect, bases play nicely with this definition as well, as shown by the following easy proposition.

Proposition 2.2. Let $(X, \mathcal{T}_1)$ and $(Y, \mathcal{T}_2)$ be topological spaces, and let $\mathcal{B}_{X}$ and $\mathcal{B}_{Y}$ be bases on $X$ and $Y$ that generate $\mathcal{T}_1$ and $\mathcal{T}_2$, respectively. Then \[ \mathcal{B}=\left\{U \times V: U \in \mathcal{B}_{X}, V \in \mathcal{B}_{Y}\right\} \] is a basis for the product topology on $X \times Y$

Proof. $\mathcal{B}_{X} \subseteq \mathcal{T}$ and $\mathcal{B}_{Y} \subseteq \mathcal{U},$ and so every element of $\mathcal{B}$ is open in the product topology.
Now fix an open set $U$ in the product topology, and some point $(x, y) \in U .$ We need to find an element $B \in \mathcal{B}$ such that $x \in B \subseteq U .$ By definition of the product topology, there must be some $U_{X} \in \mathcal{T}$ and $U_{Y} \in \mathcal{U}$ such that $(x, y) \in U_{X} \times U_{Y} \subseteq U .$ Using the fact that $\mathcal{B}_{X}$ and $\mathcal{B}_{Y}$ are bases, find sets $B_{X} \in \mathcal{B}_{X}$ and $B_{Y} \in \mathcal{B}_{Y}$ such that $x \in B_{X} \subseteq U_{X}$ and $y \in B_{Y} \subseteq U_{Y} .$ But then we have: \[ (x, y) \in B_{X} \times B_{Y} \subseteq U_{X} \times U_{Y} \subseteq U \] so $B=B_{X} \times B_{Y}$ is the set we were looking for. Of course, this fact generalizes to larger finite products and the proof is similarly straightforward.

Barycentre de deux points

Définition 1: On appelle barycentre des points \(A\) et \(B\) ( ou \(A\) et \(B\) deux points du plan ou de I'espace ) affectés respectivement des coefficients \(\alpha, \beta\) ( ou \(\alpha, \beta\) sont des réels tels que \(\alpha+\beta \neq 0\) l'unique point \(G\) tel que \(\alpha \overrightarrow{G A}+\beta \overrightarrow{G B}=\overrightarrow{0}\)


Recent Posts